Treffer: Vortex method with meshless spatial adaption for accurate simulation of viscous, unsteady vortical flows

Title:
Vortex method with meshless spatial adaption for accurate simulation of viscous, unsteady vortical flows
Source:
8th ICFD Conference on Numerical Methods for Fluid Dynamics: Part 1International journal for numerical methods in fluids. 47(8-9):841-848
Publisher Information:
Chichester: Wiley, 2005.
Publication Year:
2005
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
Graduate Aeronautical Laboratories, Cultech, Pasadena CA 91125, United States
ISSN:
0271-2091
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16671779
Database:
PASCAL Archive

Weitere Informationen

A vortex method has been developed where spatial adaption of the Lagrangian vortex particles is provided by the technique of radial basis function interpolation. In this way, the meshless formulation of the vortex method is preserved throughout. Viscous effects are provided by the core spreading method, where core size control is accomplished in the spatial adaption, thus ensuring convergence. Numerical experiments demonstrate considerable increase in accuracy, in comparison with standard remeshing schemes used with vortex methods. Proof-of-concept is achieved successfully on a problem of quasi-steady tripole vortex flow, and parallel implementation of the method has permitted high-accuracy computations of vortex interactions at high Reynolds number.