Treffer: String gradient weighted moving finite elements

Title:
String gradient weighted moving finite elements
Source:
8th ICFD Conference on Numerical Methods for Fluid Dynamics: Part 2International journal for numerical methods in fluids. 47(10-11):1329-1336
Publisher Information:
Chichester: Wiley, 2005.
Publication Year:
2005
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computing Laboratory, Oxford, United Kingdom
Mathematics Department, University of California at Berkeley, United States
ISSN:
0271-2091
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16684423
Database:
PASCAL Archive

Weitere Informationen

Moving finite element methods are well established for solution of systems of partial differential equations which contain regions where the solution is rapidly varying but moving. The string or second gradient weighted moving finite element method (SGWMFE) uses a piecewise linear discretization of a single evolving manifold to approximate the solution of the PDEs. In the case of one space dimension, x, and two dependent variables, u(x, t) and v(x, t), the solution is calculated from the normal motion of a single manifold [x(τ,t),u(τ,t),v(τ,t)], where τ is a parameter along the maniflold, or a 'string' embedded in [x,u,v] space. This method can be extended to multiple dimensions and an arbitrary number of dependent variables in which case the 'string' parameterization analogy is replaced by a multi-variable parameterization. We outline the application of SGWMFE for solution of the shallow water equations in one and two space dimensions.