Result: Microwave pulse compression using a helically corrugated waveguide

Title:
Microwave pulse compression using a helically corrugated waveguide
Source:
Selected oral contributed papers from ICOPS 2004IEEE transactions on plasma science. 33(2):661-667
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2005.
Publication Year:
2005
Physical Description:
print, 14 ref 2
Original Material:
INIST-CNRS
Subject Terms:
Nuclear physics, Physique nucléaire, Plasma physics, Physique des plasmas, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Electromagnétisme; optique électronique et ionique, Electromagnetism; electron and ion optics, Divers, Other topics in electromagnetism; electron and ion optics, Sciences appliquees, Applied sciences, Electronique, Electronics, Tubes électroniques, masers, Electronic tubes, masers, Microwave tubes (eg, klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.), Compression impulsion, Pulse compression, Compresión impulsos, Couplage, Coupling, Acoplamiento, Dispersion onde, Wave dispersion, Dispersión onda, Dépendance fréquence, Frequency dependence, Etude expérimentale, Experimental study, Estudio experimental, Etude théorique, Theoretical study, Estudio teórico, Guide onde cannelé, Corrugated waveguide, Guía onda acanalado, Guide onde hélicoïdal, Helical waveguide, Guía onda helicoidal, Hyperfréquence, Microwave, Hiperfrecuencia, Impulsion électromagnétique, Electromagnetic pulse, Impulsión electromagnética, Modèle PIC, PIC model, Méthode particule dans cellule, Particle in cell method, Método partícula dentro célula, Tube onde progressive, Travelling wave tube, Tubo onda progresiva, Vitesse groupe, Group velocity, Velocidad grupo, Electromagnetic coupling, pulse compression methods
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Cockcroft Institute, University of Lancaster, LA 1 4YR Lancaster, United Kingdom
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russian Federation
Department of Physics, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
ISSN:
0093-3813
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics

Physics: electromagnetism
Accession Number:
edscal.16745372
Database:
PASCAL Archive

Further Information

There has been a drive in recent years to produce ultrahigh power short microwave pulses for a range of applications. These high-power pulses can be produced by microwave pulse compression. Sweep-frequency based microwave pulse compression using smooth bore hollow waveguides is one technique of passive pulse compression, however, at very high powers, this method has some limitation due to its operation close to cutoff. A special helical corrugation of a circular waveguide ensures an eigenwave with strongly frequency dependent group velocity far from cutoff, which makes the helically corrugated waveguide attractive for use as a passive pulse compressor for very high-power amplifiers and oscillators. The results of proof-of-principle experiments and calculations of the wave dispersion using a particle in cell particle-in-cell (PIC) code are presented. In the experiments, a 70-ns 1-kW pulse from a conventional traveling-wave tube (TWT) was compressed in a 2-m-long helical waveguide. The compressed pulse had a peak power of 10.9 kW and duration of 3 ns. In order to find the optimum pulse compression ratio, the waveguide's dispersion characteristics must be well known. The dispersion of the helix was calculated using the PIC code Magic and verified using an experimental technique. Future work detailing plans to produce short ultrahigh power gigawatt (GW) pulses will be discussed.