Result: Convex envelopes for edge-concave functions

Title:
Convex envelopes for edge-concave functions
Source:
Deterministic global optimization and applicationsMathematical programming. 103(2):207-224
Publisher Information:
Heidelberg: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, United States
ISSN:
0025-5610
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Operational research. Management
Accession Number:
edscal.16842825
Database:
PASCAL Archive

Further Information

Deterministic global optimization algorithms frequently rely on the convex underestimation of nonconvex functions. In this paper we describe the structure of the polyhedral convex envelopes of edge-concave functions over polyhedral domains using geometric arguments. An algorithm for computing the facets of the convex envelope over hyperrectangles in R3 is described. Sufficient conditions are described under which the convex envelope of a sum of edge-concave functions may be shown to be equivalent to the sum of the convex envelopes of these functions.