Treffer: Mutual coupling matrix estimation and null forming methods for MBF antennas

Title:
Mutual coupling matrix estimation and null forming methods for MBF antennas
Source:
IEICE transactions on communications. 88(6):2305-2312
Publisher Information:
Oxford: Oxford University Press, 2005.
Publication Year:
2005
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Division of Electrical and Computer Engineering, Yokohama National University, Yokohama-shi, 240- 8501, Japan
ISSN:
0916-8516
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.16885235
Database:
PASCAL Archive

Weitere Informationen

MBF (Microwave Beam Forming) antennas are beam forming antennas that perform pattern control in RF, for a low-cost design suitable for mobile terminals. An MBF antenna has only a single output port, since this antenna consists of an array antenna, microwave phase shifters, and a power combiner. Because of this simple configuration, MBF antennas cannot adopt conventional beam forming algorithms that require both phase and amplitude control, and signal observation of each antenna element. In this paper, mutual coupling matrix estimation and null forming methods are presented for MBF antennas. It is shown that the mutual coupling matrix can be estimated by changing the antenna weight instead of signal observation of each antenna element. It is also shown that phase-only null forming, including mutual coupling effect, can be done by the optimum phase perturbations. Numerical and experimental results show the performance of these algorithms.