Treffer: PDE-based deconvolution with forward-backward diffusivities and diffusion tensors
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Deblurring with a spatially invariant kernel of arbitrary shape is a frequent problem in image processing. We address this task by studying nonconvex variational functionals that lead to diffusion-reaction equations of Perona-Malik type. Further we consider novel deblurring PDEs with anisotropic diffusion tensors. In order to improve deblurring quality we propose a continuation strategy in which the diffusion weight is reduced during the process. To evaluate our methods, we compare them to two established techniques: Wiener filtering which is regarded as the best linear filter, and a total variation based deconvolution which is the most widespread deblurring PDE. The experiments confirm the favourable performance of our methods, both visually and in terms of signal-to-noise ratio.