Result: Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays

Title:
Several new generalized linear- and optimum-time synchronization algorithms for two-dimensional rectangular arrays
Source:
MCU : machines, computations, and universality (Saint Petersburg, 21-24 September 2004, revised selected papers)Lecture notes in computer science. :223-232
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Univ. of Osaka Electro-Communication, Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.16894682
Database:
PASCAL Archive

Further Information

We propose several new generalized synchronization algorithms for 2-D cellular arrays. Firstly, a generalized linear-time synchronization algorithm and its 14-state implementation are given. It is shown that there exists a 14-state 2-D CA that can synchronize any m x n rectangular array in m + n + max(r+s,m+n-r-s+2) - 4 steps with the general at an arbitrary initial position (r, s),where 1≤r≤m,1≤s≤n. The generalized linear-time synchronization algorithm is interesting in that it includes an optimum-step synchronization algorithm as a special case where the general is located at one corner. In addition, we propose a noveloptimum-time generalized synchronization scheme that can synchronize any m x n array in m + n + max(m, n) - min(r, m - r +1) -min(s, n - s + 1) - 1 optimum steps.