Result: QED : An efficient framework for temporal region query processing
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
In this paper, we explore a new problem of temporal dense region query to discover the dense regions in the constrainted time intervals which can be separated or not. A Querying tEmporal Dense Region framework (abbreviated as QED) proposed to deal with this problem consists of two phases: (1) an offline maintaining phase, to maintain the statistics of data by constructing a number of summarized structures, RF-trees; (2) an online query processing phase, to provide an efficient algorithm to execute queries on the RF-trees. The QED framework has the advantage that by using the summarized structures, RF-trees, the queries can be executed efficiently without accessing the raw data. In addition, a number of RF-trees can be merged with one another efficiently such that the queries will be executed efficiently on the combined RF-tree. As validated by our empirical studies, the QED framework performs very efficiently while producing the results of high quality.