Treffer: A new evolutionary neural network classifier
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper proposes two new concepts: (1) the new evolutionary algorithm and (2) the new approach to deal with the classification problems by applying the concepts of the fuzzy c-means algorithm and the evolutionary algorithm to the artificial neural network. During training, the fuzzy c-means algorithm is initially used to form the clusters in the cluster layer; then the evolutionary algorithm is employed to optimize those clusters and their parameters. During testing, the class whose cluster node returns the maximum output value is the result of the prediction. This proposed model has been benchmarked against the standard backpropagation neural network, the fuzzy ARTMAP, C4.5, and CART. The results on six benchmark problems are very encouraging.