Result: Convex programming methods for global optimization
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
We describe four approaches to solving nonconvex global optimization problems by convex nonlinear programming methods. It is assumed that the problem becomes convex when selected variables are fixed. The selected variables must be discrete, or else discretized if they are continuous. We first survey some existing methods: disjunctive programming with convex relaxations, logic-based outer approximation, and logic-based Benders decomposition. We then introduce a branch-and-bound method with convex quasi-relaxations (BBCQ) that can be effective when the discrete variables take a large number of real values. The BBCQ method generalizes work of Bollapragada, Ghattas and Hooker on structural design problems. It applies when the constraint functions are concave in the discrete variables and have a weak homogeneity property in the continuous variables.