Treffer: Statistical modeling and segmentation in cardiac MRI using a grid computing approach

Title:
Statistical modeling and segmentation in cardiac MRI using a grid computing approach
Source:
Advances in grid computing (Amsterdam, 14-16 February 2005, revised selected papers)Lecture notes in computer science. :6-15
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Algorithme réparti, Distributed algorithm, Algoritmo repartido, Analyse image, Image analysis, Análisis imagen, Analyse statistique, Statistical analysis, Análisis estadístico, Analyse tâche, Task analysis, Approche probabiliste, Probabilistic approach, Enfoque probabilista, Banque image, Image databank, Banco imagen, Base donnée, Database, Base dato, Calcul réparti, Distributed computing, Cálculo repartido, Forme tridimensionnelle, Three dimensional shape, Forma tridimensional, Grille, Grid, Rejilla, Génie biomédical, Biomedical engineering, Ingeniería biomédica, Haute performance, High performance, Alto rendimiento, Imagerie RMN, Nuclear magnetic resonance imaging, Imaginería RMN, Interface programme application, Application program interfaces, Intergiciel, Middleware, Logicial personalizado, Modélisation, Modeling, Modelización, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Raisonnement basé sur modèle, Model-based reasoning, Robustesse, Robustness, Robustez, Segmentation, Segmentación, Service web, Web service, Servicio web, Système réparti, Distributed system, Sistema repartido, Traitement image, Image processing, Procesamiento imagen, Traitement informatique, Computerized processing, Tratamiento informático, Validation, Validación, Ventricule gauche, Left ventricle, Ventrículo izquierdo
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computational Imaging Laboratory, Universitat Pompeu Fabra, Barcelona, Spain
Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
GridSystems S.A, Palma de Mallorca, Spain
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17011377
Database:
PASCAL Archive

Weitere Informationen

Grid technology is widely emerging as a solution for wide-spread applicability of computerized analysis and processing procedures in biomedical sciences. In this paper we show how a cardiac image analysis task can substantially benefit from Grids, making use of a middleware service tailored to the needs of common application'tasks. In a first part we describe a methodology for the construction of three-dimensional (3D) statistical shape models of the heart, from a large image database of dynamic MRI studies. Non-rigid registration is needed for the automatic establishing of landmark correspondences across populations of healthy and diseased hearts; but when dealing with large databases, the computational load of current algorithms becomes a serious burden. Our Grid service API provided an easy way of taking benefit from our computing resources, by allowing for pipelining the distributed and non-distributed steps of the algorithm. As a second part of this work we show how the constructed shape models can be used for segmenting the left ventricle in MRI studies. To this aim we have performed an exhaustive tuning of the parameters of a 3D model-based segmentation scheme, also in a distributed way. We run a series of segmentation tests in a Monte Carlo fashion, but only making use of the Grid service web portal, as this time the pipeline was simpler. Qualitative and quantitative validation of the fitting results indicates that the segmentation performance was greatly improved with the tuning, combining robustness with clinically acceptable accuracy.