Treffer: On the minimization of the number of forwarding nodes for multicast in wireless ad hoc networks

Title:
On the minimization of the number of forwarding nodes for multicast in wireless ad hoc networks
Source:
Networking and mobile computing (Zhangjiajie, 2-4 August 2005)Lecture notes in computer science. :286-294
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science & Technology, University of Science & Technology of China, National High Performance Computing Center at Hefei, 230027, China
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17028293
Database:
PASCAL Archive

Weitere Informationen

Ad-hoc networks are collections of mobile nodes communicating using wireless media and without any fixed physical infrastructure. Multicast is an important application in wireless ad hoc networks. Most of the existing protocols construct a VMB (Virtual Multicast Backbone) to provide multicast services. In this paper, we will use MSCDS (Minimum Steiner Connected Dominating Set) in UDG (Unit Disk Graph) to model the optimal VMB, which aims at minimizing the number of forwarding nodes and present a centralized approximation algorithm with a PR (Performance Ratio) approaching 2c +1, where c is the PR of edge weighted Steiner tree algorithm, currently with c= 1.55. It is an improvement of the previous best approximation guarantee 10.