Treffer: Algorithmic and complexity issues of three clustering methods in microarray data analysis

Title:
Algorithmic and complexity issues of three clustering methods in microarray data analysis
Source:
COCOON 2005 : computing and combinatorics (Kunming, 16-29 August 2005)Lecture notes in computer science. :74-83
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics National University of Singapore, Singapore 117543, Singapore
The Inst. of High Performance Computing, Singapore 117528, Singapore
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.17096311
Database:
PASCAL Archive

Weitere Informationen

The complexity, approximation and algorithmic issues of several clustering problems are studied. These non-traditional clustering problems arise from recent studies in microarray data analysis. We prove the following results. (1) Two variants of the Order-Preserving Submatrix problem are NP-hard. There are polynomial-time algorithms for the Order-Preserving Submatrix Problem when the condition or gene sets are given. (2) The Smooth Subset problem cannot be approximable with ratio 0.5 + S for any constant 6 > 0 unless NP=P. (3) Inferring plaid model problem is NP-hard.