Result: Simple distributed algorithms for approximating minimum steiner trees
Kasetsart University, Bangkok, Thailand
Department of Computer Engineering Kasetsart University, Bangkok, Thailand
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
Given a network G = (V, E), edge weights w(.), and a set of terminals S C V, the minimum-weight Steiner tree problem is to find a tree in G that spans S with minimum weight. Most provable heuristics treat the network G is a metric; This assumption, in a distributed setting, cannot be easily achieved without a subtle overhead. We give a simple distributed algorithm based on a minimum spanning tree heuristic that returns a solution whose cost is within a factor of two of the optimal. The algorithm runs in time O(|V| log |V|) on a synchronous network. We also show that another heuristic based on iteratively finding shortest paths gives a Θ(log |V|)-approximation using a novel charging scheme based on low-congestion routing on trees. Both algorithms work for unit-cost and general cost cases. The algorithms also have applications in finding multicast trees in wireless ad hoc networks.