Treffer: Server allocation algorithms for tiered systems

Title:
Server allocation algorithms for tiered systems
Source:
COCOON 2005 : computing and combinatorics (Kunming, 16-29 August 2005)Lecture notes in computer science. :632-643
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Flots dans les réseaux. Problèmes combinatoires, Flows in networks. Combinatorial problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Recherche information. Graphe, Information retrieval. Graph, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Algorithme rapide, Fast algorithm, Algoritmo rápido, Complexité calcul, Computational complexity, Complejidad computación, File attente, Queue, Fila espera, Finissage, Finishing, Acabado, Fonction réponse, Response function, Función respuesta, Internet, Modèle non linéaire, Non linear model, Modelo no lineal, Modélisation, Modeling, Modelización, Méthode polynomiale, Polynomial method, Método polinomial, Métrique, Metric, Métrico, Problème NP complet, NP complete problem, Problema NP completo, Problème combinatoire, Combinatorial problem, Problema combinatorio, Programmation mathématique, Mathematical programming, Programación matemática, Qualité service, Service quality, Calidad servicio, Réponse temporelle, Time response, Respuesta temporal, Réseau web, World wide web, Red WWW, Temps polynomial, Polynomial time, Tiempo polinomial, Temps réponse, Response time, Tiempo respuesta
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computer Science Division, University of California, Berkeley, CA 94720, United States
Computer Science Depart, University of California, Santa Barbara, CA 93106, United States
TU Eindhoven, Depart. of Math. and CS, Eindhoven, Netherlands
HP Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, United States
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.17096524
Database:
PASCAL Archive

Weitere Informationen

Many web-based systems have a tiered application architecture, in which a request needs to transverse all the tiers before finishing its processing. One of the most important QoS metrics for these applications is the expected response time for the user. Since the expected response time in any tier depends upon the number of servers allocated to this tier, and a request's total response time is the sum of the response times at all the tiers, many different configurations (number of servers allocated to each tier) can satisfy the expected response time requirement. Naturally, one would like to find the configuration to minimize the total system cost while satisfying the total response time requirement. This is modeled as a non-linear optimization problem using an open-queuing network model of response time, which we call the server allocation problem for tiered systems (SAPTS). In this paper we study the computational complexity of SAPTS and design efficient algorithms to solve it. For a variable number of tiers, we show that the decision problem of SAPTS is NP-complete. Then we design a simple two-approximation algorithm and a fully polynomial time approximation scheme (FPTAS). If the number of tiers is a constant, we show that SAPTS is polynomial-time solvable. Furthermore, we design a fast polynomial-time exact algorithm to solve for the important two-tier case. Most of our results extend to the general case where each tier has an arbitrary response time function.