Result: Quantifier elimination for constraint logic programming
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
We present an extension of constraint logic programming, where the admissible constraints are arbitrary first-order formulas over various domains: real numbers with ordering, linear constraints over p-adic numbers, complex numbers, linear constraints over the integers with ordering and congruences (parametric Presburger Arithmetic), quantified propositional calculus (parametric QSAT), term algebras. Our arithmetic is always exact. For R are C there are no restrictions on the polynomial degree of admissible constraints. Constraint solving is realized by effective quantifier elimination. We have implemented our methods in our system CLP(RL). A number of computation examples with CLP(RL) are given in order to illustrate the conceptual generalizations provided by our approach and to demonstrate its feasibility.