Treffer: Integrated mining for cancer incidence factors from healthcare data
ISV Solutions, IBM-Japan Application Solution Co., Ltd. 1-14 Nissin-cho, Kawasaki-ku, Kanagawa 210-8550, Japan
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper describes how data mining is being used to identify primary factors of cancer incidences and living habits of cancer patients from a set of health and living habit questionnaires. Decision tree, radial basis function and back propagation neural network have been employed in this case study. Decision tree classification uncovers the primary factors of cancer patients from rules. Radial basis function method has advantages in comparing the living habits between a group of cancer patients and a group of healthy people. Back propagation neural network contributes to elicit the important factors of cancer incidences. This case study provides a useful data mining template for characteristics identification in healthcare and other areas.