Treffer: Grassroots approach to self-management in large-scale distributed systems

Title:
Grassroots approach to self-management in large-scale distributed systems
Source:
UPP 2004 : unconventional programming paradigms (15-17 September 2004, Mont Saint Michel, revised selected & invited papers)Lecture notes in computer science. :286-296
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Théorie programmation, Programming theory, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Génie logiciel, Software engineering, Autoorganisation, Self organization, Autoorganización, Charge dynamique, Dynamic load, Carga dinámica, Déploiement, Unfolding, Despliegue, Détection erreur, Error detection, Detección error, Développement logiciel, Software development, Desarrollo logicial, Facteur humain, Human factor, Factor humano, Fonction erreur, Error function, Función error, Haute performance, High performance, Alto rendimiento, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Maintenance informatique, Computer maintenance, Maintenance système, System maintenance, Mantenimiento sistema, Monitorage, Monitoring, Monitoreo, Réparation, Repair, Reparación, Surveillance, Vigilancia, Système autonome, Autonomous system, Sistema autónomo, Système complexe, Complex system, Sistema complejo, Système interaction, Interaction system, Sistema interacción, Système multiagent, Multiagent system, Sistema multiagente, Système réparti, Distributed system, Sistema repartido, Théorie système, Systems theory, Teoría sistema, Tolérance faute, Fault tolerance, Tolerancia falta
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, University of Bologna, Italy
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17134538
Database:
PASCAL Archive

Weitere Informationen

Traditionally, autonomic computing is envisioned as replacing the human factor in the deployment, administration and maintenance of computer systems that are ever more complex. Partly to ensure a smooth transition, the design philosophy of autonomic computing systems remains essentially the same as traditional ones, only autonomic components are added to implement functions such as monitoring, error detection, repair, etc. In this position paper we outline an alternative approach which we call grassroots self-management. While this approach is by no means a solution to all problems, we argue that recent results from fields such as agent-based computing, the theory of complex systems and complex networks can be efficiently applied to achieve important autonomic computing goals, especially in very large and dynamic environments. Unlike traditional compositional design, in the grassroots approach, desired properties like self-healing and self-organization are not programmed explicitly but rather emerge from the local interactions among the system components. Such solutions are potentially more robust to failures, are more scalable and are extremely simple to implement. We discuss the practicality of grassroots autonomic computing through the examples of data aggregation, topology management and load balancing in large dynamic networks.