Treffer: Structural health monitoring of co-cured composite structures using FBG sensors

Title:
Structural health monitoring of co-cured composite structures using FBG sensors
Source:
Smart structures and integrated systems (San Diego CA, 7-10 March 2005)SPIE proceedings series. :559-570
Publisher Information:
Bellingham WA: SPIE, 2005.
Publication Year:
2005
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Mechanics acoustics, Mécanique et acoustique, Metrology and instrumentation, Métrologie et instrumentation, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Techniques et équipements généraux, General equipment and techniques, Transducteurs, Transducers, Systèmes asservis et systèmes de commande; robots, Servo and control equipment; robots, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Mécanique de la rupture (fissure, fatigue, endommagement...), Fracture mechanics (crack, fatigue, damage...), Méthodes de mesure et d'essai, Measurement and testing methods, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Assemblage boulonné, Bolted joint, Ensamblaje empernado, Assemblage collé, Adhesive joint, Ensambladura pegada, Assemblage mécanique, Mechanical joint, Ensamblaje mecánico, Aéronef, Aircraft, Aeronave, Capteur fibre optique, Fiber optic sensors, Durcissement(matière plastique), Curing(plastics), Endurecimiento(material plástico), Effet peau, Skin effect, Efecto piel, Endommagement, Damaging, Deterioración, Essai non destructif, Non destructive test, Ensayo no destructivo, Fibre verre, Glass fiber, Fibra vidrio, Jauge contrainte, Resistance strain gauge, Gauge tensión, Matériau composite, Composite material, Material compuesto, Mesure contrainte, Stress measurement, Mesure déformation, Deformation measurement, Medición deformación, Modélisation, Modeling, Modelización, Méthode élément fini, Finite element method, Método elemento finito, Préimprégné, Prepreg, Preimpregnado, Réseau Bragg, Bragg grating, Rejilla Bragg, Réseau neuronal, Neural network, Red neuronal, Réseau optique, Optical arrays, Structure renforcée, Reinforced structure, Estructura reforzada, Système intelligent, Intelligent system, Sistema inteligente
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Advanced Composites Division, National Aerospace Laboratories, Bangalore - 560 017, India
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology

Physics: solid mechanics
Accession Number:
edscal.17134660
Database:
PASCAL Archive

Weitere Informationen

Structural Health Monitoring (SHM) of aircraft structures, especially composite structures, has assumed increased significance on considerations of safety and costs. With the advent of co-cured structures, wherein bonded joints are replacing bolted joints there is a concern regarding skin-stiffener separation, which might not be detected unless a rigorous non-destructive testing (NDT) is done. It would hence be necessary to be able to detect and assess skin-stiffener separation in composite structures before it reaches the critical size. One of the health monitoring strategies is through strain monitoring using fibre optic strain sensors such as Fibre Bragg Grating (FBG) sensors. The first aspect that needs to be addressed is the characterization of the FBG sensors. Issues of embedment in composites have also to be addressed. Before evolving a damage detection strategy, the sensitivity of the structural strain to skin-stiffener separations must be clearly understood and quantified. This paper presents the analysis and experiments done with a composite test box to study the effect of skin-stiffener separation on the strain behaviour. The box consists of two skins stiffened with spars made of Bi-Directional (BD) glass-epoxy prepreg material. The spars are bolted to the skins and removing suitable number of bolts simulates 'de-bonds'. The strains of the healthy box are compared with the unhealthy box. The strains in the experiments are monitored using both strain gauges and Fibre Bragg Grating (FBG) sensors. The experimental results show that there is significant change in the measured strain near and away from the debond location. The finite element analysis of the box is done using ABAQUS<TM> and the analysis is validated with the experimental results. A neural network based methodology is developed here to detect skin-stiffener debonds in structures. A multi-layer perceptron (MLP) neural network with a feed forward back propagation algorithm is used to determine the size/severity of damage. The FE model is used to generate the neural network training data for various sizes of debonds. The results show that the network is able to predict the damage size well. The network is implemented for a specified load. However, it is seen that the damage size predicted is independent of the applied load and the network performance is dependent on the fidelity of the finite element model used to train the network.