Treffer: A fuzzy neural network for intelligent data processing

Title:
A fuzzy neural network for intelligent data processing
Source:
Data mining, intrusion detection, information assurance, and data networks security 2005 (Orlando FL, 28-29 March 2005)SPIE proceedings series. :283-290
Publisher Information:
Bellingham WA: SPIE, 2005.
Publication Year:
2005
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Computer science, Informatique, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Algorithme recherche, Search algorithm, Algoritmo búsqueda, Algorithme rétropropagation, Backpropagation algorithm, Algoritmo retropropagación, Arbre décision, Decision tree, Arbol decisión, Architecture réseau, Network architecture, Arquitectura red, Base connaissance, Knowledge base, Base conocimiento, Cancérologie, Cancerology, Cancerología, Classification, Clasificación, Descente gradient, Gradient descent, Gradient bajada, Fonction appartenance, Membership function, Función pertenencia, Fonction poids, Weight function, Función peso, Gradient, Gradiente, Homme, Human, Hombre, Logique floue, Fuzzy logic, Lógica difusa, Modélisation, Modeling, Modelización, Optimisation, Optimization, Optimización, Réseau intelligent, Intelligent networks, Réseau neuronal flou, Fuzzy neural nets, Réseau neuronal, Neural network, Red neuronal, Rétropropagation, Backpropagation, Retropropagacíon, Système expert, Expert system, Sistema experto, Traitement donnée, Data processing, Tratamiento datos, Tumeur maligne, Malignant tumor, Tumor maligno, Validation, Validación
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
Nanyang Technological University, Block Sl, Nanyang Avenue, Singapore 639798, Singapore
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17135134
Database:
PASCAL Archive

Weitere Informationen

In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch - there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.