Result: High fidelity field simulations using density and pressure based approaches

Title:
High fidelity field simulations using density and pressure based approaches
Source:
Applied scientific computing: recent approaches to grid generation, approximation and numerical modellingApplied numerical mathematics. 55(3):264-282
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 54 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations aux dérivées partielles, problèmes aux valeurs limites, Partial differential equations, boundary value problems, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Benchmark, Benchmarks, Champ intense, High field, Campo intenso, Compressibilité, Compressibility, Compresibilidad, Coordonnée curviligne, Curvilinear coordinate, Coordenada curvilínea, Ecoulement compressible, Compressible flow, Ecoulement généralisé, Generalized flow, Flujo generalizado, Ecoulement incompressible, Incompressible flow, Ecoulement solide, Solids flow, Equation Navier Stokes, Navier Stokes equation, Ecuación Navier Stokes, Equation champ, Field equation, Ecuación campo, Equation conservation, Conservation equation, Ecuación conservación, Forme différentielle, Differential form, Forma diferencial, Géométrie complexe, Complex geometry, Geometría compleja, Lagrangien, Lagrangian, Lagrangiano, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode numérique, Numerical method, Método numérico, Méthode volume fini, Finite volume method, Método volumen finito, Nombre Mach, Mach number, Número Mach, Particule solide, Solid particle, Partícula sólida, Simulation écoulement, Flow simulation, CFD, Méthode basée densité, Density based method, Méthode basée pression, Pressure based method, Méthode comparaison, Density-based method, Pressure-based method
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical Engineering, University of Alabama at Birmingham, United States
ISSN:
0168-9274
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Physics: fluid mechanics
Accession Number:
edscal.17157817
Database:
PASCAL Archive

Further Information

Density-based and pressure-based approaches in solving the Navier-Stokes equations for computational field simulations for compressible and incompressible flows have been presented. For the density-based flow solver, a generalized grid based framework has been developed and employed to simulate the complex-geometry problems with ease. The integral form of the standard and artificial compressibility form of Navier-Stokes equations has been taken as the governing form for the density-based method. For the pressure-based flow solver, the differential form of the conservation equations in the curvilinear coordinates was solved with a non-staggered structure-grid topology. A predictor plus multi-corrector algorithm (which can handle the flow with a wide range of Mach numbers without using the artificial compressibility and the preconditioning method) is utilized in the pressure-based method. Also, the capability has been developed to model the gas-particle (liquid and/or solid) multi-phase flows in the Eulerian-LaGrangian particle-tracking framework. Though the strengths and weaknesses of these two methods have been well documented, there is yet an extensive study to compare these two methods in terms of their numerical accuracies, computational efficiencies, and limitations. In this paper, these two models are validated separately, and the results are presented. Comparisons of these two methods with various benchmark test cases will be assessed and addressed in the future.