Treffer: Computing dialectical trees efficiently in possibilistic defeasible logic programming
Department of Computer Science and Engineering, Universidad Nacional del Sur, Alem 1253, (8000) Bahía Blanca, Argentina
Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty and fuzzy knowledge at object-language level. Solving a P-DeLP query Q accounts for performing an exhaustive analysis of arguments and defeaters for Q, resulting in a so-called dialectical tree, usually computed in a depth-first fashion. Computing dialectical trees efficiently in P-DeLP is an important issue, as some dialectical trees may be computationally more expensive than others which lead to equivalent results. In this paper we explore different aspects concerning how to speed up dialectical inference in P-DeLP. We introduce definitions which allow to characterize dialectical trees constructively rather than declaratively, identifying relevant features for pruning the associated search space. The resulting approach can be easily generalized to be applied in other argumentation frameworks based in logic programming.