Result: The parameterization method in optimal control problems and differential-algebraic equations

Title:
The parameterization method in optimal control problems and differential-algebraic equations
Source:
International Workshop on the Technological Aspects of MathematicsJournal of computational and applied mathematics. 185(2):377-390
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations différentielles, Ordinary differential equations, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Contrôle optimal, Optimal control (mathematics), Control óptimo (matemáticas), Equation algébrique, Algebraic equation, Ecuación algebraica, Equation différentielle, Differential equation, Ecuación diferencial, Equation dégénérée, Degenerate equation, Ecuación degenerada, Fonction contrôle, Control function, Función control, Forme normale, Normal form, Forma normal, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode numérique, Numerical method, Método numérico, Paramétrisation, Parameterization, Parametrización, Equation différentielle algébrique, Problème singulier, Restriction phase, Phase restriction, Calculus of variations, Degenerate problems, Differential-algebraic equations, Optimal control, Parameterization method, Phase restrictions
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Ulyanovsk State University, L.Tolsloy Street 42, 432970 Ulyanovsk, Russian Federation
ISSN:
0377-0427
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.17186256
Database:
PASCAL Archive

Further Information

The paper is devoted to the explanation of the numerical parameterization method (PM) for optimal control (OC) problems with intermediate phase constraint and to its circumstantiation for classical calculus of variation (CV) problems that arise in connection with singular ODEs or DAEs, especially in cases of their essential degeneracy. The PM is based on a finite parameterization of control functions and on derivation of the problem functional with respect to control parameters. The first and the second derivatives are calculated with the help of adjoint vector and matrix impulses. Results of the solution to one phase constrained OC and two degenerate CV problems, connected with singular DAEs nonreducible to the normal form, are presented.