Result: Numerical solution of stochastic differential problems in the biosciences
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Generalities in biological sciences
Mathematics
Further Information
Stochastic differential equations (SDEs) models play a prominent role in many application areas including biology, epidemiology and population dynamics, mostly because they can offer a more sophisticated insight through physical phenomena than their deterministic counterparts do. So, suitable numerical methods must be introduced to simulate the solutions of the resulting stochastic differential systems. In this work we take into account both Euler-Taylor expansion and Runge-Kutta-type methods for stochastic ordinary differential equations (SODEs) and the Euler-Maruyama method for stochastic delay differential equations (SDDEs), focusing on the most relevant implementation issues. The corresponding Matlab codes for both SODEs and SDDEs problems are tested on mathematical models arising in the biosciences.