Treffer: DC-free error-control block codes
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
DC-free codes and error-control (EC) codes are widely used in digital transmission and storage systems. To improve system performance in terms of code rate, bit-error rate (BER), and low-frequency suppression, and to provide a flexible tradeoff between these parameters, this paper introduces a new class of codes with both dc-control and EC capability. The new codes integrate dc-free encoding and EC encoding, and are decoded by first applying standard EC decoding techniques prior to dc-free decoding, thereby avoiding the drawbacks that arise when dc-free decoding precedes EC decoding. The de-free code property is introduced into standard EC codes through multimode coding techniques, at the cost of minor loss in BER performance on the additive white Gaussian noise channel, and some increase in implementation complexity, particularly at the encoder. This paper demonstrates that a wide variety of EC block codes can be integrated into this dc-free coding structure, including binary cyclic codes, binary primitive BCH codes, Reed-Solomon codes, Reed-Muller codes, and some capacity-approaching EC block codes, such as low-density parity-check codes and product codes with iterative decoding. Performance of the new de-free EC block codes is presented.