Result: A parametric bootstrap test for cycles
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
The paper proposes a simple test for the hypothesis of strong cycles and as a by-product a test for weak dependence for linear processes. We show that the limit distribution of the test is the maximum of a (semi) Gaussian process G(τ), τ ∈ [0,1]. Because the covariance structure of G(τ) is a complicated function of T and model dependent, to obtain the critical values (if possible) of maxτ∈[0,1] G(τ) may be difficult. For this reason, we propose a bootstrap scheme in the frequency domain to circumvent the problem of obtaining (asymptotically) valid critical values. The proposed bootstrap can be regarded as an alternative procedure to existing bootstrap methods in the time domain such as the residual-based bootstrap. Finally, we illustrate the performance of the bootstrap test by a small Monte-Carlo experiment and an empirical example.