Result: MAP estimation via agreement on trees : Message-passing and linear programming
Department of Electrical En gineering and Computer Science, the Massachusetts Institute of Technology, Cambridge, MA 02139, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
We develop and analyze methods for computing provably optimal maximum a posteriori probability (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of tree-structured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: a) a tree-relaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and b) a tree-reweighted max-product message-passing algorithm that is related to but distinct from the max-product algorithm. In this way, we establish a connection between a certain LP relaxation of the mode-finding problem and a reweighted form of the max-product (min-sum) message-passing algorithm.