Result: A generalization of repetition threshold

Title:
A generalization of repetition threshold
Source:
Mathematical foundations of computer science 2004Theoretical computer science. 345(2-3):359-369
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
LaBRI, University Bordeaux 1, 351, cours de la Liberation, 33405 Talence, France
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.17296164
Database:
PASCAL Archive

Further Information

Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold: the smallest real number a such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We generalize this concept to include the lengths of the avoided words. We give some conjectures supported by numerical evidence and prove some of these conjectures. As a consequence of one of our results, we show that the pattern ABCBABC is 2-avoidable. This resolves a question left open in Cassaigne's thesis.