Treffer: A common algebraic description for probabilistic and quantum computations

Title:
A common algebraic description for probabilistic and quantum computations
Source:
Mathematical foundations of computer science 2004Theoretical computer science. 345(2-3):206-234
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Subject Terms:
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Département d'informatique, Université de Sherbrooke, 2500, boul. Université, Sherbrooke, Québec, J1K 2R1, Canada
Département de génie informatique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada
Institut fur Informatik, Technische Universitat Munchen Boltzmannstrasse 3, 85748 Garching bei Munchen, Germany
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Theoretical physics
Accession Number:
edscal.17300157
Database:
PASCAL Archive

Weitere Informationen

Through the study of gate arrays we develop a unified framework to deal with probabilistic and quantum computations, where the former is shown to be a natural special case of the latter. On this basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor formula F of order n x 1 over a semiring plus a positive integer k, deciding whether the kth partial trace of the matrix valn,nS (F FT) fulfills a certain property. We use this to show that a certain promise version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for formulas over the semiring (Q+, +, .) of the positive rational numbers, for pr-BQP (promise BQP) in the case of formulas denned over the field (Q+, +, .), and if the promise is given up, then completeness for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general are used. This suggests that the difference between probabilistic and quantum polytime computers may ultimately lie in the possibility, in the latter case, of having destructive interference between computations occurring in parallel. Moreover, by considering variants of this problem, classes like ○+P, NP, C=P, its complement co-C=P, the promise version of Valiant's class UP, its generalization promise SPP, and unique polytime US can be characterized by carrying the problem properties and the underlying semiring.