Result: Predictor-corrector procedures for pseudo-dynamic tests

Title:
Predictor-corrector procedures for pseudo-dynamic tests
Source:
Engineering computations. 22(7-8):783-834
Publisher Information:
Bradford: Emerald, 2005.
Publication Year:
2005
Physical Description:
print, 3 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mechanical engineering, Génie mécanique, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Techniques de calcul, Computational techniques, Annihilation, Approximation asymptotique, Asymptotic approximation, Aproximación asintótica, Effet non linéaire, Non linear effect, Efecto no lineal, Essai dynamique, Dynamic testing, Etude expérimentale, Experimental study, Fréquence résonance, Resonance frequency, Frecuencia resonancia, Grande vitesse, High speed, Gran velocidad, Haute fréquence, High frequency, Alta frecuencia, Intégration numérique, Numerical integration, Integración numérica, Localisation, Localization, Localización, Modélisation, Modelling, Méthode domaine temps, Time domain method, Método dominio tiempo, Méthode dynamique, Dynamic method, Método dinámico, Méthode itérative, Iterative methods, Méthode prédicteur correcteur, Predictor-corrector methods, Précision élevée, High precision, Precisión elevada, Rendement élevé, High efficiency, Rendimiento elevado, Sous structure, Substructure, Subestructura, Synthèse modale, Mode component synthesis, Síntesis modal, Système n degrés liberté, System with n degrees of freedom, Sistema n grados libertad, Théorie algorithme, Algorithm theory, Théorie programmation, Programming theory, Numerical analysis, Programming and algorithm theory, Structures, Tests and testing
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento, Trento, Italy
ISSN:
0264-4401
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.17302298
Database:
PASCAL Archive

Further Information

Purpose - To propose novel predictor-corrector time-integration algorithms for pseudo-dynamic testing. Design/methodology/approach - The novel predictor-corrector time-integration algorithms are based on both the implicit and the explicit version of the generalized-a method. In the non-linear unforced case second-order accuracy, stability in energy, energy decay in the high-frequency range as well as asymptotic annihilation are distinctive properties of the generalized-α scheme; while in the non-linear forced case they are the limited error near the resonance in terms of frequency location and intensity of the resonant peak. The implicit generalized-a algorithm has been implemented in a predictor-one corrector form giving rise to the implicit IPC-ρ∞ method, able to avoid iterative corrections which are expensive from an experimental standpoint and load oscillations of numerical origin. Moreover, the scheme embodies a secant stiffness formula able to approximate closely the actual stiffness of a structure. Also an explicit algorithm has been implemented, the EPC-pb method, endowed with user-controlled dissipation properties. The resulting schemes have been tested experimentally both on a two- and on a six-degrees-of-freedom system, exploiting substructuring techniques. Findings - The analytical findings and the tests have indicated that the proposed numerical strategies enhance the performance of the pseudo-dynamic test (PDT) method even in an environment characterized by considerable experimental errors. Moreover, the schemes have been tested numerically on strongly non-linear multiple-degrees-of-freedom systems reproduced with the Bouc-Wen hysteretic model, showing that the proposed algorithms reap the benefits of the parent generalized-a methods. Research limitations/implications - Further developments envisaged for this study are the application of the IPC-ρ∞ method and of EPC-pb scheme to partitioned procedures for high-speed pseudo-dynamic testing with substructuring. Practical implications - The implicit IPC-ρ∞ and the explicit EPC-pb methods allow a user to have defined dissipation which reduces the effects of experimental error in the PDT without needing onerous iterations. Originality/value - The paper proposes novel time-integration algorithms for pseudo-dynamic testing. Thanks to a predictor-corrector form of the generalized-a method, the proposed schemes maintain a high computational efficiency and accuracy.