Treffer: Two contributions of constraint programming to machine learning

Title:
Two contributions of constraint programming to machine learning
Source:
Foundations of security analysis and design III (FOSAD 2004/2005 Tutorial lectures)Lecture notes in computer science. :617-624
Publisher Information:
New York, NY: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 14 ref 1
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Université d'Orléans-LIFO, BP6759, 45067 Orléans, France
ISSN:
0302-9743
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17324824
Database:
PASCAL Archive

Weitere Informationen

A constraint is a relation with an active behavior. For a given relation, we propose to learn a representation adapted to this active behavior. It yields two contributions. The first is a generic meta-technique for classifier improvement showing performances comparable to boosting. The second lies in the ability of using the learned concept in constraint-based decision or optimization problems. It opens a new way of integrating Machine Learning in Decision Support Systems.