Treffer: Threshold properties of random boolean constraint satisfaction problems

Title:
Threshold properties of random boolean constraint satisfaction problems
Authors:
Source:
Typical case complexity and phase transitionsDiscrete applied mathematics. 153(1-3):141-152
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
CCS-5, Basic and Applied Simulation Science, Los Alamos National Laboratory, Mail Stop M 997, Los Alamos, NM 87545, United States
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17350531
Database:
PASCAL Archive

Weitere Informationen

We study threshold properties of random constraint satisfaction problems under a probabilistic model due to Molloy [Models for random constraint satisfaction problems, in: Proceedings of the 32nd ACM Symposium on Theory of Computing, 2002]. We give a sufficient condition for the existence of a sharp threshold. In the boolean case, it gives an independent proof for the more difficult half of a classification result conjectured by Creignou and Daudé [Generalized satisfiability problems: minimal elements and phase transitions. Theor. Comput. Sci. 302(1-3) (2003)417-430], proved in a restricted case by the same authors [Combinatorial sharpness criterion and phase transition classification for random CSPs, Inform. Comput. 190(2) (2004) 220-238], and established by them [Coarse and sharp thresholds for random generalized satisfiability problems, in: M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger (Eds.), Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and Probabilities, Birkhauser, Basel, September 2004, pp. 507-517] while this paper was in the refereeing process.