Treffer: Combined analyser-based and propagation-based phase-contrast imaging of weak objects
Title:
Combined analyser-based and propagation-based phase-contrast imaging of weak objects
Authors:
Source:
Optics communications. 259(1):19-31
Publisher Information:
Amsterdam: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Optics, Optique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Optique, Optics, Formation des images et traitement optique, Imaging and optical processing, Fonctions de transfert optique et de transfert de modulation, Modulation and optical transfer functions, Reconstruction de la phase, Phase retrieval, Formation et traitement des images, Image forming and processing, Reconstruction des images; tomographie optique, Image reconstruction; tomography, Approximation Born, Born approximation, Cohérence optique, Light coherence, Cohérence partielle, Partial coherence, Coherencia parcial, Contraste phase, Phase contrast, Contraste fase, Diffraction RX, XRD, Diffraction onde électromagnétique, Electromagnetic wave diffraction, Etude théorique, Theoretical study, Fonction transfert optique, Optical transfer function, Formation image, Imaging, Imagerie RX, X-ray imaging, Milieu opaque, Opaque medium, Medio opaco, Problème inverse, Inverse problems, Rayon X dur, Hard x radiation, Reconstruction image, Image reconstruction, Reconstruction phase, Phase reconstruction, Reconstrucción fase, Simulation numérique, Digital simulation, 4230L, 4230R, 4230V, 4230W, 07.85.-m, 42.25.Fx, 42.25.Kb, 42.30.Lr, 42.30.Rx, 42.30.Va, 42.30.Wb X-ray instruments, Coherence, Diffraction, Image forming and reconstruction, Optical transfer functions, Phase retrieval
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
CSIRO Manufacturing and Infrastructure Technology, Private Bag 33, Clayton South, Vic. 3169, Australia
School of Physics, Monash University, Vic. 3800, Australia
Monash Centre for Synchrotron Science, Monash University, Vic. 3800, Australia
School of Physics, Monash University, Vic. 3800, Australia
Monash Centre for Synchrotron Science, Monash University, Vic. 3800, Australia
ISSN:
0030-4018
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: optics
Accession Number:
edscal.17423916
Database:
PASCAL Archive
Weitere Informationen
A new theoretical method combining analyser-based and propagation-based hard X-ray phase-contrast imaging is investigated. Unlike the previous theoretical model of the combined imaging method constructed under the assumption of slow variation of the individual transfer functions (large Fresnel numbers), a new model proposed in this paper uses the assumption of a weak scatterer (analogous to the first Born approximation). Consequently, the results are not limited to the case of short propagation distances or low-resolution imaging. An explicit expression for the combined transfer function is derived and analytical and numerical examples solving related inverse imaging problems are presented.