Treffer: A categorical model for the geometry of interaction
Title:
A categorical model for the geometry of interaction
Authors:
Source:
Automata, languages and programming: logic and semantics (ICALP-B 2004)Theoretical computer science. 350(2-3):252-274
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Logique mathématique, fondements, théorie des ensembles, Mathematical logic, foundations, set theory, Logique et fondements, Logic and foundations, Logique générale, General logic, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Théorie programmation, Programming theory, Algèbre opérateur, Operator algebra, Algebra operador, Consistance sémantique, Soundness, Consistencia semantica, Informatique théorique, Computer theory, Informática teórica, Logique linéaire, Linear logic, Lógica lineal, Catégorie additive, Catégorie décomposition, Decomposition category, Catégorie monoïdale, Géométrie interaction, Geometry of interaction, Soundness theorem, Partially additive categories, Traced monoidal categories, Unique decomposition categories
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and School of Informatics, Indiana University Bloomington, Bloomington, Indiana 47408, United States
Department of Mathematics and Statistics, University of Ottawa, Ottawa, KIS 6N5, Canada
Department of Mathematics and Statistics, University of Ottawa, Ottawa, KIS 6N5, Canada
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.17495193
Database:
PASCAL Archive
Weitere Informationen
We consider the multiplicative and exponential fragment of linear logic (MELL) and give a geometry of interaction (Gol) semantics for it based on unique decomposition categories. We prove a soundness and finiteness theorem for this interpretation. We show that Girard's original approach to Gol 1 via operator algebras is exactly captured in this categorical framework.