Treffer: A categorical model for the geometry of interaction

Title:
A categorical model for the geometry of interaction
Source:
Automata, languages and programming: logic and semantics (ICALP-B 2004)Theoretical computer science. 350(2-3):252-274
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and School of Informatics, Indiana University Bloomington, Bloomington, Indiana 47408, United States
Department of Mathematics and Statistics, University of Ottawa, Ottawa, KIS 6N5, Canada
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.17495193
Database:
PASCAL Archive

Weitere Informationen

We consider the multiplicative and exponential fragment of linear logic (MELL) and give a geometry of interaction (Gol) semantics for it based on unique decomposition categories. We prove a soundness and finiteness theorem for this interpretation. We show that Girard's original approach to Gol 1 via operator algebras is exactly captured in this categorical framework.