Treffer: Entropy as a fixed point

Title:
Entropy as a fixed point
Authors:
Source:
Automata, languages and programming: logic and semantics (ICALP-B 2004)Theoretical computer science. 350(2-3):292-324
Publisher Information:
Amsterdam: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Center for High Assurance Computer Systems (Code 5540), Naval Research Laboratory, Washington DC 20375, United States
ISSN:
0304-3975
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.17495195
Database:
PASCAL Archive

Weitere Informationen

We study complexity and information and introduce the idea that while complexity is relative to a given class of processes, information is process independent: Information is complexity relative to the class of all conceivable processes. In essence, the idea is that information is an extension of the concept 'algorithmic complexity' from a class of desirable and concrete processes, such as those represented by binary decision trees, to a class more general that can only in pragmatic terms be regarded as existing in the conception. It is then precisely the fact that information is defined relative to such a large class of processes that it becomes an effective tool for analyzing phenomena in a wide range of disciplines. We test these ideas on the complexity of classical states. A domain is used to specify the class of processes, and both qualitative and quantitative notions of complexity for classical states emerge. The resulting theory is used to give new proofs of fundamental results from classical information theory, to give a new characterization of entropy in quantum mechanics, to establish a rigorous connection between entanglement transformation and computation, and to derive lower bounds on algorithmic complexity. All of this is a consequence of the setting which gives rise to the fixed point theorem: The least fixed point of the copying operator above complexity is information.