Treffer: An improved analysis for approximating the smallest κ-edge connected spanning subgraph of a multigraph

Title:
An improved analysis for approximating the smallest κ-edge connected spanning subgraph of a multigraph
Authors:
Source:
SIAM journal on discrete mathematics (Print). 19(1):1-18
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005.
Publication Year:
2005
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Programmation mathématique, Mathematical programming, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Connectivité graphe, Graph connectivity, Conectividad grafo, Mathématiques discrètes, Discrete mathematics, Matemáticas discretas, Multigraphe, Multigraph, Multígrafo, Performance, Rendimiento, Temps polynomial, Polynomial time, Tiempo polinomial, Algorithme combinatoire, Combinatorial algorithm, Conception réseau, Network design, Famille laminaire, Laminar family, approximation algorithms, edge connectivity, graph connectivity, laminar family, multigraphs, network design
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430, United States
ISSN:
0895-4801
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.17507088
Database:
PASCAL Archive

Weitere Informationen

Khuller and Raghavachari [J. Algorithms, 21 (1996), pp. 434-450] present an approximation algorithm (the KR algorithm) for finding the smallest k-edge connected spanning subgraph (k-ECSS) of an undirected multigraph. They prove the KR algorithm has an approximation ratio < 1.85. We improve this bound to ≤ 1 + √1/e < 1.61 (for odd k we modify the base case of the KR algorithm). This is the best-known performance bound for a combinatorial approximation algorithm for the smallest k-ECSS problem for arbitrary k. Our analysis also gives the best-known combinatorial performance bound for any fixed value of k > 3, e.g., for even k the approximation ratio is < 1 + (1 - 1 k)k/2. Our analysis is based on a laminar family of sets (similar to families used in related contexts) which gives a better accounting of edges added in previous iterations of the algorithm. We also present a polynomial time implementation of the KR algorithm on multigraphs, running in the time for O(nm) maximum flow computations, where n (m) is the number of vertices (edges, not counting parallel copies), respectively. This complements the implementation of Khuller and Raghavachari [J. Algorithms, 21 (1996), pp. 434-450] which uses time O((kn)2) and is efficient for small k.