Result: On the solution of algebraic Riccati equations arising in fluid queues

Title:
On the solution of algebraic Riccati equations arising in fluid queues
Source:
Special issue on the 11th ILAS conference (Coimbra, 2004)Linear algebra and its applications. 413(2-3):474-494
Publisher Information:
New York, NY: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
Départment d'Informatique, U.L.B., C.P. 212, Boulevard du Triomphe, 1050 Bruxelles, Belgium
ISSN:
0024-3795
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.17520079
Database:
PASCAL Archive

Further Information

New algorithms for solving algebraic Riccati equations (ARE) which arise in fluid queues models are introduced. They are based on reducing the ARE to a unilateral quadratic matrix equation of the kind AX2 + BX + C = 0 and on applying the Cayley transform in order to arrive at a suitable spectral splitting of the associated matrix polynomial. A shifting technique for removing unwanted eigenvalues of modulus 1 is complemented with a suitable parametrization of the matrix equation in order to arrive at fast and numerically reliable solvers based on quadratically convergent iterations like logarithmic reduction and cyclic reduction. Numerical experiments confirm the very good performance of these algorithms.