Treffer: Hybrid rounding techniques for knapsack problems

Title:
Hybrid rounding techniques for knapsack problems
Source:
Efficient algorithmsDiscrete applied mathematics. 154(4):640-649
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Approximation polynomiale, Polynomial approximation, Aproximación polinomial, Borne supérieure, Upper bound, Cota superior, Complexité linéaire, Linear complexity, Complejidad lineal, Erreur arrondi, Rounding error, Error redondear, Informatique théorique, Computer theory, Informática teórica, Problème sac à dos, Knapsack problem, Problema mochila, Programmation dynamique, Dynamic programming, Programación dinámica, Solution approchée, Approximate solution, Solución aproximada, Stockage, Storage, Almacenamiento, Temps linéaire, Linear time, Tiempo lineal, Temps polynomial, Polynomial time, Tiempo polinomial, Cardinalité, Précision fixe, Fixed accuracy, Approximation schemes, Arithmetic and geometric rounding, Knapsack problems
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
IDSIA, Galleria 2, 6928 Manno, Switzerland
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.17554861
Database:
PASCAL Archive

Weitere Informationen

We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and more powerful ways of rounding. Moreover, we present a linear-storage polynomial time approximation scheme (PTAS) and a fully polynomial time approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. These linear complexity bounds give a substantial improvement of the best previously known polynomial bounds [A. Caprara, et al., Approximation algorithms for knapsack problems with cardinality constraints, European J. Oper. Res. 123 (2000) 333-345].