Treffer: A simulated annealing-based method for learning bayesian networks from statistical data

Title:
A simulated annealing-based method for learning bayesian networks from statistical data
Source:
Uncertainty processingInternational journal of intelligent systems. 21(3):335-348
Publisher Information:
New York, NY: Wiley, 2006.
Publication Year:
2006
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute of Information Theory and Automation, Prague, Czech Republic
ISSN:
0884-8173
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.17583031
Database:
PASCAL Archive

Weitere Informationen

The problem of learning Bayesian networks from statistical data is described and reformulated as a discrete optimization problem. For a solution we employ the stochastic algorithm that is known as simulated annealing and that is based on the Markov Chain Monte Carlo approach. Numerical examples are included to illustrate the efficiency of the method.