Result: Clutter nonidealness
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
Several key results for set packing problems do not seem to be easily or even possibly transferable to set covering problems, although the symmetry between them. The goal of this paper is to introduce a nonidealness index by transferring the ideas used for the imperfection index defined by Gerke and McDiarmid [Graph imperfection, J. Combin. Theory Ser. B 83 (2001) 58-78]. We found a relationship between the two indices and the strength of facets defined in [M. Goemans, Worst-case comparison of valid inequalities for the TSP, mathematical programming, in: Fifth Integer Programming and Combinatorial Optimization Conference, Lecture Notes in Computer Science, vol. 1084, Vancouver, Canada, 1996, pp. 415-429; M. Goemans, L.A. Hall, The strongest facets of the acyclic subgraph polytope are unknown, in: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 1084, Springer, Berlin, 1996, pp. 415-429]. We prove that a clutter is as nonideal as its blocker and find some other properties that could be transferred from the imperfection index to the nonidealness index. Finally, we analyze the behavior of the nonidealness index under some clutter operations.