Treffer: Complexity results on restricted instances of a paint shop problem for words
Title:
Complexity results on restricted instances of a paint shop problem for words
Authors:
Source:
2nd Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW 2003), Enschede, The Netherlands, May 14-16, 2003Discrete applied mathematics. 154(9):1335-1343
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Problèmes combinatoires classiques, Classical combinatorial problems, Géométrie, Geometry, Géométrie convexe et discrète, Convex and discrete geometry, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Borne inférieure, Lower bound, Cota inferior, Complexité, Complexity, Complejidad, Couleur, Color, Informatique théorique, Computer theory, Informática teórica, Séquençage, Sequencing, Temps polynomial, Polynomial time, Tiempo polinomial, Matroïde binaire, Binary matroid, MaxFlow MinCut, NP-complétude, Paint shop, Problème ARX difficile, APX hardness, Problème mot, APX-hardness, Binary matroids, MaxFlow-MinCut, NP-completeness
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
Department of Mathematics, BTU Cottbus, Germany
Fern Universität in Hagen, 58084 Hagen, Germany
Department of Mathematics, BTU Cottbus, Germany
Fern Universität in Hagen, 58084 Hagen, Germany
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.17737555
Database:
PASCAL Archive
Weitere Informationen
We study the following problem: an instance is a word with every letter occurring twice. A solution is a 2-coloring of its letters such that the two occurrences of every letter are colored with different colors. The goal is to minimize the number of color changes between adjacent letters. This is a special case of the paint shop problem for words, which was previously shown to be NP-complete. We show that this special case is also NP-complete and even APX-hard. Furthermore, derive lower bounds for this problem and discuss a transformation into matroid theory enabling us to solve some specific instances within polynomial time.