Result: Well-covered graphs and factors
Title:
Well-covered graphs and factors
Authors:
Source:
2nd Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW 2003), Enschede, The Netherlands, May 14-16, 2003Discrete applied mathematics. 154(9):1416-1428
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Théorie des graphes, Graph theory, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Combinatoire, Combinatorics, Combinatoria, Informatique théorique, Computer theory, Informática teórica, Recouvrement graphe, Graph covering, Cubierta grafo, Bien-couvert, Well-covered, Cardinalité, Ensemble indépendant maximal, Facteur, Factor, Graphe recouvrement, Nombre indépendance, Independence number
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institut für Informatik, Universitdt zu Köln, 50969 Köln, Germany
Mathematics Department, Aalborg University, 9220 Aalborg, Denmark
Mathematics Department, Aalborg University, 9220 Aalborg, Denmark
ISSN:
0166-218X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.17737563
Database:
PASCAL Archive
Further Information
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1, 2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying a(G) = α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α ≥ (n - 1 )/2, and in particular all very well-covered graphs.