Result: Data association based on optimization in graphical models with application to sensor networks

Title:
Data association based on optimization in graphical models with application to sensor networks
Source:
Optimization and Control for Military ApplicationsMathematical and computer modelling. 43(9-10):1114-1135
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 27 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Analyse multivariable, Multivariate analysis, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Analyse numérique, Numerical analysis, Análisis numérico, Association statistique, Statistical association, Asociación estadística, Code correcteur erreur, Error correcting code, Código corrector error, Echange information, Information exchange, Intercambio información, Envoi message, Message passing, Estimation statistique, Statistical estimation, Estimación estadística, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode graphique, Graphic method, Método gráfico, Méthode optimisation, Optimization method, Método optimización, Noeud graphe, Graph node, Nudo grafo, Pistage, Tracking, Rastreo, Poursuite cible, Target tracking, Programmation mathématique, Mathematical programming, Programación matemática, Réseau capteur, Sensor array, Red sensores, Résolution problème, Problem solving, Resolución problema, Surveillance, Vigilancia, Type donnée, Data type, Tipo dato, Vision ordinateur, Computer vision, Visión ordenador, Modèle graphique, Graphical model
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, United States
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
ISSN:
0895-7177
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.17795996
Database:
PASCAL Archive

Further Information

We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max-product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data.