Treffer: Comparison of selection rules for ordinal optimization

Title:
Comparison of selection rules for ordinal optimization
Source:
Optimization and Control for Military ApplicationsMathematical and computer modelling. 43(9-10):1150-1171
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Analyse numérique, Numerical analysis, Análisis numérico, Conception système, System design, Concepción sistema, Efficacité, Efficiency, Eficacia, Etude comparative, Comparative study, Estudio comparativo, Evaluation performance, Performance evaluation, Evaluación prestación, Fonction régression, Regression function, Función regresión, Loi probabilité, Probability distribution, Ley probabilidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Méthode à pas, Step method, Método a paso, Programmation mathématique, Mathematical programming, Programación matemática, Règle sélection, Selection rule, Regla selección, Système complexe, Complex system, Sistema complejo, Système événement discret, Discrete event system, Sistema acontecimiento discreto, Optimisation ordinale, Ordinal optimization, Comparison, Selection rules
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University, Beijing 100084, China
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
ISSN:
0895-7177
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.17795998
Database:
PASCAL Archive

Weitere Informationen

The evaluation of performance of a design for complex discrete event systems through simulation is usually very time consuming. Optimizing the system performance becomes even more computationally infeasible. Ordinal optimization (OO) is a technique introduced to attack this difficulty in system design by looking at order in performances among designs instead of value and providing a probability guarantee for a good enough solution instead of the best for sure. The selection rule, known as the rule to decide which subset of designs to select as the OO solution, is a key step in applying the OO method. Pairwise elimination and round robin comparison are two selection rule examples. Many other selection rules are also frequently used in the ordinal optimization literature. To compare selection rules, we first identify some general facts about selection rules. Then we use regression functions to quantify the efficiency of a group of selection rules, including some frequently used rules. A procedure to predict good selection rules is proposed and verified by simulation and by examples. Selection rules that work well most of the time are recommended.