Treffer: Issues in the real-time computation of optimal control
Department of Applied Mathematics, Naval Postgraduate School, Code MA/Ff, Monterey, CA 93943, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Weitere Informationen
Under appropriate conditions, the dynamics of a control system governed by ordinary differential equations can be formulated in several ways: differential inclusion, control parametrization, flatness parametrization, higher-order inclusions and so on. A plethora of techniques have been proposed for each of these formulations but they are typically not portable across equivalent mathematical formulations. Further complications arise as a result of configuration and control constraints such as those imposed by obstacle avoidance or control saturation. In this paper, we present a unified framework for handling the computation of optimal controls where the description of the governing equations or that of the path constraint is not a limitation. In fact, our method exploits the advantages offered by coordinate transformations and harnesses any inherent smoothness present in the optimal system trajectories. We demonstrate how our computational framework can easily and efficiently handle different cost formulations, control sets and path constraints. We illustrate our ideas by formulating a robotics problem in eight different ways, including a differentially flat formulation subject to control saturation. This example establishes the loss of convexity in the flat formulation as well as its ramifications for computation and optimality. In addition, a numerical comparison of our unified approach to a recent technique tailored for control-affine systems reveals that we get about 30% improvement in the performance index.