Treffer: Issues in the real-time computation of optimal control

Title:
Issues in the real-time computation of optimal control
Source:
Optimization and Control for Military ApplicationsMathematical and computer modelling. 43(9-10):1172-1188
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 49 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations différentielles, Ordinary differential equations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Analyse numérique, Numerical analysis, Análisis numérico, Contrainte espace commande, Control constraint, Control constreñido, Contrôle optimal, Optimal control (mathematics), Control óptimo (matemáticas), Equation différentielle, Differential equation, Ecuación diferencial, Inclusion différentielle, Differential inclusion, Inclusión diferencial, Indice performance, Performance index, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Robotique, Robotics, Robótica, Régime dynamique, Dynamic conditions, Régimen dinámico, Temps calcul, Computation time, Tiempo computación, Temps réel, Real time, Tiempo real, Trajectoire optimale, Optimal trajectory, Trayectoria óptima, Contrainte ensemble, Transformation coordonnée
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical and Astronautical Engineering, Naval Postgraduate School, Code AA/Ro, Monterey, CA 93943, United States
Department of Applied Mathematics, Naval Postgraduate School, Code MA/Ff, Monterey, CA 93943, United States
ISSN:
0895-7177
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.17795999
Database:
PASCAL Archive

Weitere Informationen

Under appropriate conditions, the dynamics of a control system governed by ordinary differential equations can be formulated in several ways: differential inclusion, control parametrization, flatness parametrization, higher-order inclusions and so on. A plethora of techniques have been proposed for each of these formulations but they are typically not portable across equivalent mathematical formulations. Further complications arise as a result of configuration and control constraints such as those imposed by obstacle avoidance or control saturation. In this paper, we present a unified framework for handling the computation of optimal controls where the description of the governing equations or that of the path constraint is not a limitation. In fact, our method exploits the advantages offered by coordinate transformations and harnesses any inherent smoothness present in the optimal system trajectories. We demonstrate how our computational framework can easily and efficiently handle different cost formulations, control sets and path constraints. We illustrate our ideas by formulating a robotics problem in eight different ways, including a differentially flat formulation subject to control saturation. This example establishes the loss of convexity in the flat formulation as well as its ramifications for computation and optimality. In addition, a numerical comparison of our unified approach to a recent technique tailored for control-affine systems reveals that we get about 30% improvement in the performance index.