Result: SAR ATR using genetics based machine learning

Title:
SAR ATR using genetics based machine learning
Source:
Algorithms for synthetic aperture radar imagery XII (28-31 March 2005, Orlando, Florida, USA)Proceedings of SPIE, the International Society for Optical Engineering. :269-281
Publisher Information:
Bellingham WA: SPIE, 2005.
Publication Year:
2005
Physical Description:
print, 22 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Computer science, Informatique, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Représentation du signal. Analyse spectrale, Signal representation. Spectral analysis, Télécommunications, Telecommunications, Radiorepérage et radionavigation, Radiolocalization and radionavigation, Adressage, Addressing, Direccionamiento, Algorithme génétique, Genetic algorithm, Algoritmo genético, Analyse composante principale, Principal component analysis, Análisis componente principal, Appareil portatif, Portable equipment, Aparato portátil, Apprentissage, Learning, Aprendizaje, Calcul évolutionniste, Evolutionary computation, Classification automatique, Automatic classification, Clasificación automática, Classification signal, Signal classification, Erreur quadratique moyenne, Mean square error, Error medio cuadrático, Innovation, Innovación, Mesure de distance, Distance measurement, Medición distancia, Méthode heuristique, Heuristic method, Método heurístico, Méthode statistique, Statistical method, Método estadístico, Problème combinatoire, Combinatorial problem, Problema combinatorio, Précision, Accuracy, Precisión, Radar ouverture synthétique, Synthetic aperture radar, Radar abertura sintética, Radar poursuite, Tracking radar, Radar persecusión, Radar surveillance, Search radar, Radar vigilancia, Reconnaissance automatique, Automatic recognition, Reconocimiento automático, Reconnaissance cible radar, Radar target recognition, Robustesse, Robustness, Robustez, Règle inférence, Inference rule, Regla inferencia, Système apprentissage, Learning systems
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Scientific Systems Company Inc., 500 West Cummings Park, Suite 3000, Woburn, Massachusetts 01801, United States
University of the West of England, Bristol, United Kingdom
ISSN:
0277-786X
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.17809790
Database:
PASCAL Archive

Further Information

Addressing the challenge of robust ATR, this paper describes the development and demonstration of Machine Learning for Robust ATR. The primary innovation of this work is the development of an automated way of developing heuristic inference rules that can draw on multiple models and multiple feature types to make more robust ATR decisions. The key realization is that this meta learning problem is one of structural learning; that can be conducted independently of parameter learning associated with each model and feature based technique, and more effectively draw on the strengths of all such techniques, and even information from unforeseen techniques. This is accomplished by using robust, genetics-based machine learning for the ill conditioned combinatorial problem of structural rule learning, while using statistical and mathematical techniques for parameter learning. This paper describes a learning classifier system approach (with evolutionary computation for structural learning) for robust ATR and points to a promising solution to the structural learning problem, across multiple feature types (which we will refer to as the meta-learning problem), for ATR with EOCs. This system was tested on MSTAR Public Release SAR data using nominal and extended operation conditions. These results were also compared against two baseline classifiers, a PCA based distance classifier and a MSE classifier. The systems were evaluated for accuracy (via training set classification) and robustness (via testing set classification). In both cases, the LCS based robust ATR system performed very well with accuracy over 99% and robustness over 80%.