Result: Modeling psychometric functions in R
Université Claude Bernard Lyon 1, IFR19, Bron, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
FRANCIS
Further Information
Modeling psychometric functions in R We demonstrate some procedures in the statistical computing environment R for obtaining maximum likelihood estimates of the parameters of a psychometric function by fitting a generalized nonlinear regression model to the data. A feature for fitting a linear model to the threshold (or other) parameters of several psychometric functions simultaneously provides a powerful tool for testing hypotheses about the data and, potentially, for reducing the number of parameters necessary to describe them. Finally, we illustrate procedures for treating one parameter as a random effect that would permit a simplified approach to modeling stimulus-independent variability due to factors such as lapses or interobserver differences. These tools will facilitate a more comprehensive and explicit approach to the modeling of psychometric data.