Result: Consistent initial conditions for lattice Boltzmann simulations

Title:
Consistent initial conditions for lattice Boltzmann simulations
Source:
Proceedings of the First International Conference for Mesoscopic Methods in Engineering and Science (ICMMES), Braunschweig, Germany, July 25-30, 2004Computers & fluids. 35(8-9):855-862
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6300, United States
Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States
LIMSI Bâtiment 508, Université Paris-Sud (Paris XI Orsay), 91405 Orsay, France
Laboratoire de Physique Statistique de l'École Normale Supérieure, 24, Rue Lhomond, 75321 Paris, France
ISSN:
0045-7930
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.17868479
Database:
PASCAL Archive

Further Information

We propose a simple and effective iterative procedure to generate consistent initial conditions for the lattice Boltzmann equation (LBE) for incompressible flows with a given initial velocity field u0. Using the Chapman-Enskog analysis we show that not only the proposed procedure effectively solves the Poisson equation for the pressure field p0 corresponding to u0, it also generates at the same time the initial values for the nonequilibrium distribution functions {fα} in a consistent manner. This procedure is validated for the decaying Taylor-Green vortex flow in two dimensions and is shown to be particularly effective when using the generalized LBE with multiple relaxation times.