Treffer: Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows

Title:
Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows
Source:
Proceedings of the First International Conference for Mesoscopic Methods in Engineering and Science (ICMMES), Braunschweig, Germany, July 25-30, 2004Computers & fluids. 35(8-9):863-871
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Time:
4711
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Lehrstuhl fur Bauinformatik, Technische Universität München, Arcisstr. 21, 80290 München, Germany
Institutfur Computeranwendungen im Bauingemeurwesen, Technische Universität Braunschweig, Pockelstr. 3, 38106 Braunschweig, Germany
ISSN:
0045-7930
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Building. Public works. Transport. Civil engineering

Physics: fluid mechanics
Accession Number:
edscal.17868480
Database:
PASCAL Archive

Weitere Informationen

Following the work of Lallemand and Luo [Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys Rev E 2003,68:036706] we validate, apply and extend the hybrid thermal lattice Boltzmann scheme (HTLBE) by a large-eddy approach to simulate turbulent convective flows. For the mass and momentum equations, a multiple-relaxation-time LBE scheme is used while the heat equation is solved numerically by a finite difference scheme. We extend the hybrid model by a Smagorinsky subgrid scale model for both the fluid flow and the heat flux. Validation studies are presented for laminar and turbulent natural convection in a cavity at various Rayleigh numbers up to 5 x 1010 for Pr = 0.71 using a serial code in 2D and a parallel code in 3D, respectively. Correlations of the Nusselt number are discussed and compared to benchmark data. As an application we simulated forced convection in a building with inner courtyard at Re = 50000.