Result: LES of turbulent square jet flow using an MRT lattice Boltzmann model

Title:
LES of turbulent square jet flow using an MRT lattice Boltzmann model
Source:
Proceedings of the First International Conference for Mesoscopic Methods in Engineering and Science (ICMMES), Braunschweig, Germany, July 25-30, 2004Computers & fluids. 35(8-9):957-965
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 34 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Aerospace Engineering Department, Texas A&M University, College Station, TX 77840-3141, United States
Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States
ISSN:
0045-7930
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.17868492
Database:
PASCAL Archive

Further Information

In this paper we consider the application of multiple-relaxation-time (MRT) lattice Boltzmann equation (LBE) for large-eddy simulation (LES) of turbulent flows. The implementation is discussed in the context of 19-velocity (D3Q19) MRT-LBE model in conjunction with the Smagorinsky subgrid closure model. The MRT-LBE-LES is then tested in the turbulent square jet flow case. We compare MRT-LBE-LES results with (a) single-relaxation-time (SRT) or BGK LBE results and (b) experimental data. Computed results include the distribution of centerline mean streamwise velocity, jet spread, and spanwise profiles of mean streamwise velocity in the near-field region. The phenomenon of axis switching is investigated. The advantages of MRT over SRT are demonstrated. Reasonable agreement between our numerical results and experimental data demonstrate that the MRT-LBE is a potentially viable tool for LES of turbulence.